GREEN GARDEN MATRIC. HR. SEC. SCHOOL

No. of Printed Pages: 16

Perundurai R.S.

PH: 9486379461, 8344933377

B

பதிவு எண் Register Number

XI - MARCH 2020

PART-III

கணிதம் / MATHEMATICS

(தமிழ் மற்றும் ஆங்கில வழி / Tamil & English Version)

கால அளவு : 3.00 மணி நேரம்]

[மொத்த மதிப்பெண்கள் : 90

Time Allowed: 3.00 Hours]

[Maximum Marks: 90

- அனைத்து வினாக்களும் சரியாகப் பதிவாகி உள்ளதா என்பதனைச் அறிவுரைகள் : (1) ் சரிபார்த்துக் கொள்ளவும். அச்சுப்பதிவில் குறையிருப்பின், அறைக் கண்காணிப்பாளரிடம் உடனடியாகத் தெரிவிக்கவும்.
 - (2) நீலம் அல்லது கருப்பு மையினை மட்டுமே எழுதுவதற்கும், அடிகோடிடுவதற்கும் பயன்படுத்த வேண்டும். படங்கள் வரைவதற்கு பென்சில் பயன்படுத்தவும்.
- க படிய ரா ஒரு பல்லுகப்பட்டோகைக் சமன்பாடு பெற்றுள்ள முன்கள் (1) Check the question paper for fairness of printing. If there is any lack of Instructions: fairness, inform the Hall Supervisor immediately.
 - (2) Use Blue or Black ink to write and underline and pencil to draw diagrams. alogn a finare (2) mulistian (2)

elom visnigami n (4)

பகுதி - I / PART - I குறிப்பு : (i)

20x1=20

- கொடுக்கப்பட்டுள்ள மாற்று விடைகளில் மிகவும் ஏற்புடைய விடையைத் தேர்ந்தெடுத்துக் குறியீட்டுடன் விடையினையும் சேர்த்து (ii) எழுதவும். $_{\rm pressure}$ மதுப்பூர் = XA $_{\rm restrict orbit}$ on ${\rm translation}$ ([8] A]) $_{\rm q}$ = (A) $_{\rm c}$ $_{\rm translation}$
- All questions are compulsory. (i) Note:
 - and the same of the marketon Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer. (ii)

[திருப்புக / Turn over

- **1.** $\mathbf{u}(x,y) = \mathbf{e}^{x^2 + y^2}$ எனில் $\frac{\partial \mathbf{u}}{\partial x}$ ுன் மதிப்பு :
 - (1) y^2u
- $e^{x^2+y^2}$ (2)
- (3)2xu
- (4)

If $u(x, y) = e^{x^2 + y^2}$, then $\frac{\partial u}{\partial x}$ is equal to:

- (1) y^2u
- $e^{x^2+y^2}$
- (3)2xu
- x^2u (4)

- கழித்தலின் அடைவுப்பண்பு பெறாத கணம் : 2.
 - (1)
- (2)
- (3)
- (4)N

Subtraction is not a binary operation in:

- (1)
- (2)
- (3) \mathbb{Z}
- (4)N

- $\int \sin^4 x \, \mathrm{d}x$ -இன் மதிப்பு :
- (2)
- (3)

The value of $\int \sin^4 x \, dx$ is:

- (1)
- (2)
- (3)
- n படியுள்ள ஒரு பல்லுறுப்புக்கோவைச் சமன்பாடு பெற்றுள்ள மூலங்கள் : 4.
 - சரியாக n மூலங்கள் (1)
- n வெவ்வேறு மூலங்கள் (2)
- n மெய்யெண் மூலங்கள்
- n கலப்பெண் மூலங்கள் (4)

A polynomial equation of degree n always has:

exactly n roots (1)

n distinct roots (2)

n real roots (3)

- n imaginary roots (4)
- $ho(A)=
 ho([A\mid B])$ எனில், AX=B என்ற நேரியச் சமன்பாடுகளின் தொகுப்பானது : 5.
 - ஒருங்கமைவற்றது (1)
 - ஒருங்கமைவுடையது மற்றும் ஒரே ஒரு தீர்வு பெற்றிருக்கும் (2)
 - ஒருங்கமைவுடையது (3)
 - ஒருங்கமைவுடையது மற்றும் எண்ணற்ற தீர்வுகள் பெற்றிருக்கும்

If $\rho(A) = \rho([A \mid B])$, then the system AX = B of linear equations is :

- inconsistent (1)
- consistent and has a unique solution (2)
- consistent (3)
- consistent and has infinitely many solutions (4)

- $x^2=8y-1$ என்ற பரவளையத்தின் முனை : 6.
 - (1) $\left(0, -\frac{1}{8}\right)$ (2) $\left(-\frac{1}{8}, 0\right)$ (3) $\left(\frac{1}{8}, 0\right)$ (4) $\left(0, \frac{1}{8}\right)$

The vertex of the parabola $x^2 = 8y - 1$ is:

- (1) $\left(0, -\frac{1}{8}\right)$ (2) $\left(-\frac{1}{8}, 0\right)$ (3) $\left(\frac{1}{8}, 0\right)$ (4) $\left(0, \frac{1}{8}\right)$
- $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$; எனில் $\cos^{-1} x + \cos^{-1} y$ என்பதன் மதிப்பு : 7.
- (2) $\frac{2\pi}{3}$ (3) $\frac{\pi}{3}$

If $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$; then $\cos^{-1} x + \cos^{-1} y$ is equal to:

- (1) π (2) $\frac{2\pi}{3}$ (3) $\frac{\pi}{3}$
- 8. $\sum_{i=1}^{13} \left(i^n + i^{n-1}\right)$ -ன் மதிப்பு : ійц: (2) 1+*i* (3) *i*
 - (1) 0

- (4)

The value of $\sum_{i=1}^{13} (i^n + i^{n-1})$ is:

- (1) 0
- 1+i(2)

- $\overrightarrow{r}=\overrightarrow{si}+\overrightarrow{tj}$ (இங்கு \overrightarrow{s} , \overrightarrow{t} என்பவை துணையலகுகள்) என்ற சமன்பாடு : 9.
 - (1) $z_{\rm o}x$ தளம்
 - \hat{i} , \hat{j} ஆகியவற்றை இணைக்கும் நேர்கோடு
 - (3)xoy தளம்
 - (4)yoz தளம்

 $\overrightarrow{r} = s \hat{i} + t \hat{j}$ is the equation of (s, t are parameters):

- zox plane
- a straight line joining the points \hat{i} and \hat{j} (2)
- xoy plane
- yoz plane

[திருப்புக / Turn over

- மையம் (h, k) மற்றும் ஆரம் 'a' கொண்ட எல்லா வட்டங்களின் வகைக்கெழுச் 10. சமன்பாட்டின் வரிசை (இங்கு h, k, a ஆகியவை மாறத்தக்க மாறிலிகள் அல்லது ஏதேச்சையான மாறிலிகள்).
 - (1)1
- (2)2
- (3)

The order of the differential equation of all circles with centre at (h, k) and radius 'a', where h, k and a are arbitrary constants, is:

- (1)1
- (2) 2 (3) 3

with the contract

The value of $\sum_{i=1}^{m} e_i e^{ix_i}$) as:

- arg(0) -ன் மதிப்பு : 11.
 - (1)

: If t = 0 if t = 0 is a sum of t = 0 if t = 0

(3)

வரையறுக்கப்படவில்லை (4)

- arg(0) is:
- (1)

0 (2)

(3)

- undefined (4)
- $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) =$ 12.
- $\tan^{-1}\left(\frac{1}{2}\right)$, (2) $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$

 - (3) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$ (4) $\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right)$
 - $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$ is:
 - (1)

 $(2) \quad \frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$

there are a first a football at the product of the first and the first and the first at the first and the first at the first and the first at the fi

- (3) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$ (4) $\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right)$

13.	t என்ற காலத்தில் கொடுக்கப்பட்டுள்	கிடைம ளது. துக	்ட்டமாக நகரும் கள் ஓய்வு நிலை	் துக க்கு எ	ளின் நின பரும் நே	ை s(t) = ரம் :	3t ² -	2t-8 எ (#	ரக் <u>(</u>)	
	(1) $t=3$	(2)	t = 0	(3)	$t=\frac{1}{3}$		(4)	t = 1		
	The position of a p $s(t) = 3t^2 - 2t - 8$. The	ie time a	it which the part	icle is	at rest, 19	· :				
	(1) t=3	(2)	t=0	(3)	$t = \frac{1}{3} \ln t$	Tr. 72	(4)	t=1 (4.A)	, if	
14.	100 m² பரப்பளவு	கொண்ட	_ செவ்வகத்தின்	ர மீச்சி	ிறு சுற்ற <u>வ</u>	ாவு (மீட்	_டரிவ்	o) : _	(£)	
77		(2)	10	(3)	20		(4)	40		
	(1) 50 The least possible p			20.00	ele of area	a 100 m ²	is:			
	_	(2)	10	(3)	20		(4)	40		
	(1) 50	(2)	10	(5)		ucha		Ti Ti	-1	61
		00 =		mu ʻ ll l	பாவல்	The state of the s		Daniel A		
15.	n=25 மற்றும் p= மாறி X-ன்திட்ட வ	பிலக்கத்	தின் மதிப்பு :				,,		(1)	
	(1) 2	(2)	6		4		(4)	3	111	
	A random variable >	(has bin	omial distributio	n with	n = 25 ar	dp = 0.8	, then	the stand	ard	
	deviation of X is:					70.50	100			
	(1) 2	(2)	6 .	(3)	4	746-	(4)	3 only	PRINCES	
					3.40					
16.	$3x^2 + by^2 + 4bx - 6by$	$+b^2=0$	என்ற வட்டத்தி	நின் ச	ஆரம் :	(2)			(i)	
	(1) $\sqrt{11}$	(2)	1	(3)	3	4.00	(4)	$\sqrt{10}$		
	The radius of the ci	rcle $3x^2$	$+bu^{2}+4bx-6by$	$+b^{2}=$	=0 is:					
							(4)	₂ /10	rh.	10110
	$(1) \sqrt{11}$	(2)	on the Beat Mile	(3)	ST SELEVISION	Mous Ci	3.(2)	1 = 10	ub.	.00
	2			0 -	. .	σπ. π./Oπ.	÷. (= (െ പ്പ	u• 1	
17.	x + 2y + 3z + 7 = 0 LC	ற்றும்	2x + 4y + 6z + 7 =	=0 එ	நகாய த	பங்களு	8 G	ZI WILLI		
	தொலைவு :		Samuel Control	LA ros	. It lbt			11 5	T.P.	
	7		$\sqrt{7}$	7	7		(4)	$\sqrt{7}$		
	தொலைவு : $\frac{7}{2\sqrt{2}}$	(2)	$\overline{2\sqrt{2}}$	(3)	2	all la	(4)	2 h	on T	
	The distance between	- A								
	The distance between	in the P		24		h all h	1.162	=	111	
	$(1) \frac{7}{2\sqrt{2}}$	(2)	$\frac{\sqrt{7}}{2\sqrt{2}}$	(3)	$\frac{7}{2}$		(4)	$\frac{\sqrt{7}}{2}$	(t)	
										101
R							[gl	ருப்புக /	Turn	over

18.
$$(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$$
 மற்றும் $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$ எனில், $B^{-1} =$

(1)
$$\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$$
 (2)
$$\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$$
 (3)
$$\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$$
 (4)
$$\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$

$$(2) \quad \begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$$

$$(3) \quad \begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$$

$$(4) \quad \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$

If
$$(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, then $B^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$

(1)
$$\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$$
 (2)
$$\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$$
 (3)
$$\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$$
 (4)
$$\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$

$$(2) \quad \begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$$

$$(3) \quad \begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$$

$$(4) \quad \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$$

19.
$$\int_{0}^{2/3} \frac{\mathrm{d}x}{\sqrt{4-9x^2}}$$
 -இன் மதிப்பு :

(2)
$$\frac{\pi}{6}$$

(3)
$$\frac{\pi}{2}$$

(4)
$$\frac{\pi}{4}$$

(2)
$$\frac{\pi}{6}$$

(3)
$$\frac{\pi}{2}$$

(2)
$$\frac{\pi}{6}$$
 (3) $\frac{\pi}{2}$ (4) $\frac{\pi}{4}$

20.
$$\frac{\mathrm{d}x}{\mathrm{d}y} + \frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
 என்ற வகைக்கெழு சமன்பாட்டின் வரிசை மற்றும் படி முறையே :

- 2, படி வரையறுக்க இயலாது (2) 1, 2

(3) 2, 1

The order and degree of the differential equation $\frac{dx}{dy} + \frac{dy}{dx} = 0$ are:

- (1) 2, degree not defined

- (3)2, 1
- 2, 2 (4)

குறிப்பு: (i) எவையேனும் ஏழு வினாக்களுக்கு விடையளிக்கவும்.

7x2=14

(ii) வினா எண் 30 -க்கு கண்டிப்பாக விடையளிக்கவும்.

Note:

- (i) Answer any seven questions.
- (ii) Question number 30 is compulsory.
- 21. $\left(\frac{1+i}{1-i}\right)^3 \left(\frac{1-i}{1+i}\right)^3 = -2i$ என நிருபிக்க.

Prove that
$$\left(\frac{1+i}{1-i}\right)^3 - \left(\frac{1-i}{1+i}\right)^3 = -2i$$
.

- 22. (1+i) (1+2i) (1+ni)=x+iy எனில் $2\cdot 5\cdot 10\cdot$ $(1+n^2)=x^2+y^2$ என நிறுவுக. If (1+i) (1+2i) (1+ni)=x+iy, then prove that $2\cdot 5\cdot 10\cdot$ $(1+n^2)=x^2+y^2$.
- $\sin^{-1}\!\left[\sin\!\left(rac{5\pi}{4}
 ight)
 ight]$ -ன் மதிப்பு காண்க.

Find the value of $\sin^{-1}\left[\sin\left(\frac{5\pi}{4}\right)\right]$.

24. $2\hat{i}+\hat{j}-\hat{k}$ என்னும் விசை ஆதிப்புள்ளி வழியாகச் செயல்படுகிறது எனில், (2,0,-1) என்ற புள்ளியைப் பொறுத்து அவ்விசையின் முறுக்குத் திறனின் எண்ணளவு மற்றும் திசைக் கொசைன்களைக் காண்க.

Find the magnitude and the direction cosines of the torque about the point (2, 0, -1) of a force $2\hat{i} + \hat{j} - \hat{k}$, whose line of action passes through the origin.

B

[திருப்புக / Turn over

appared water the state of the

- 25. $f(x)=x+rac{1}{x}$, $x\in\left[rac{1}{2},2
 ight]$ என்ற சார்பிற்கு $\left(rac{1}{2},2
 ight)$ என்ற இடைவெளியில் ரோலின் தேற்றத்தை நிறைவுச் செய்யும் மதிப்பைக் காண்க. Find the value in the interval $\left(rac{1}{2},2
 ight)$ satisfied by the Rolle's theorem for the function $f(x)=x+rac{1}{x},\,x\in\left[rac{1}{2},2
 ight]$
- 26. $f(x)=x^2+3x$ என்ற சார்பிற்கு x=2, dx=0.1 எனும் போது df -ஐ மதிப்பிடுக. For the function $f(x)=x^2+3x$, calculate the differential df when x=2 and dx=0.1.
- 27. $\int_{0}^{\frac{\pi}{2}} \frac{f(\sin x)}{f(\sin x) + f(\cos x)} \, \mathrm{d}x = \frac{\pi}{4} \text{ என நிறுவுக.}$

Prove that
$$\int_{0}^{\pi/2} \frac{f(\sin x)}{f(\sin x) + f(\cos x)} dx = \frac{\pi}{4}.$$

- 28. $y^2 = 4ax$ எனும் பரவளையத் தொகுதியின் வகைக்கெழுச் சமன்பாட்டைக் காண்க. இங்கு 'a' என்பது மாறத்தக்க மாறிலி அல்லது ஏதேச்சை மாறிலி ஆகும். Find the differential equation of the family of parabolas $y^2 = 4ax$, where 'a' is an arbitrary constant.
- 29. ஓர் இயற்கணித அமைப்பில் சமனி உறுப்பு இருக்கும் எனில் அது ஒருமைத்தன்மை வாய்ந்தது - என நிறுவுக. Prove that the identity element is unique if it exists.
- 30. முனை (2, 1) மற்றும் (1, 3) என்ற புள்ளி வழியாக செல்வதும், இடப்பக்கம் திறப்பு உடையதுமான பரவளையத்தின் சமன்பாடு காண்க.
 Find the equation of the parabola if the curve is open leftward, vertex is (2, 1) and passing through the point (1, 3).

amir apliana

Prove that $\left(\frac{1+1}{1+1}\right)^2 - \left(\frac{1-1}{1+1}\right)^2 = -2i$

பகுதி - III / PART - III

ரிர்ச்சி சிரிய மிர்கள் சிரிய மிரிய மிரிய விரிய விரிய

குறிப்பு: (i) எவையேனும் ஏழு வினாக்களுக்கு விடையளிக்கவும்.

7x3=2

னினா எண் 40 -க்கு கண்டிப்பாக விடையளிக்கவும்.

Note:

- - (ii) Question number 40 is compulsory.
- 31. $A = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}$ எனில் $(A^T)^{-1} = (A^{-1})^T$ என நிறுவுக .

If
$$A = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}$$
 then prove that $(A^T)^{-1} = (A^{-1})^T$.

32. p என்பது ஒரு மெய்யெண் எனில், $4x^2+4px+p+2=0$ எனும் சமன்பாட்டின் மூலங்களின் தன்மையை p -ன் அடிப்படையில் ஆராய்க.

If p is real, discuss the nature of the roots of the equation $4x^2+4px+p+2=0$, in terms of p.

33. ஒரு கான்கிரீட் பாலம் பரவளைய வடிவில் உள்ளது. சாலையின்மேல் உள்ள பாலத்தின் நீளம் 40 மீ மற்றும் அதன் அதிகபட்ச உயரம் 15 மீ எனில் அந்த பரவளைய வளைவின் சமன்பாடு காண்க. முனையினை (0, 0) என எடுத்துக் கொள்க.

A concrete bridge is designed as a parabolic arch. The road over bridge is 40 m long and the maximum height of the arch is 15 m. Write the equation of the parabolic arch. Take (0, 0) as the vertex.

34. (-5, 7, -4) மற்றும் (13, -5, 2) என்ற புள்ளிகள் வழியாகச் செல்லும் நேர்க்கோட்டின் வெக்டர் மற்றும் கார்டீசியன் சமன்பாடுகளைக் காண்க. மேலும், இந்த நேர்க்கோடு xy -தளத்தை வெட்டும் புள்ளியைக் காண்க.

Find the Vector and Cartesian equations of a straight line passing through the points (-5, 7, -4) and (13, -5, 2). Find the point where the straight line crosses the xy - plane.

proclamato si na radio na nobranti

35. $f(x)=x^{4/5}(x-4)^2$ என்ற சார்பின் நிலைப்புள்ளி எண்களைக் (x -ன் மதிப்புகள்) காண்க.

Find the critical numbers (only x values) of the function $f(x) = x^{4/5}(x-4)^2$.

36. $U = \log(x^3 + y^3 + z^3)$, எனில் $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z}$ -ஐ காண்க.

If $U = \log(x^3 + y^3 + z^3)$ then find $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z}$.

37. ஒரு தனிநிலை சார்பு X -ன் நிகழ்தகவு நிறை சார்பானது :

7/	1	1 2	3	4	5	6
X	$\frac{1}{1}$	21/	6k	5k	6k	10k
P(X=x)	k	2k	6K	JK	011	

எனில் P(2 < X < 6) -ன் மதிப்புக் காண்க.

A random variable X has the following probability mass function:

	7	1 2	3	4	5	6
X	- k	2k	6k	5k	6k	10k
P(X=x)	k	2k	6k	5K	OK	el.

then find P(2 < X < 6).

(September 1 terrs

38. X என்ற தொடர் சமவாய்ப்பு மாறி

$$f(x) = \begin{cases} kx (1-x)^{10}, & 0 < x < 1 \\ 0, & \text{sign} \end{cases}$$

என வரையறுக்கப்படின், k -ன் மதிப்பினைக் காண்க.

Let X be a continuous random variable and f(x) is defined as:

$$f(x) = \begin{cases} kx (1-x)^{10}, & 0 < x < 1 \\ 0, & \text{otherwise} \end{cases}$$

find the value of k.

Prove that $p \rightarrow q \equiv \neg p \lor q$.

40. கொடுக்கப்பட்ட இரு கோடுகள்
$$\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$$
 மற்றும்

 $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ ஒரு தளத்தின் மீது அமையுமானால் அத்தளத்தின்

கார்டீசியன் சமன்பாட்டினை எத்தனை வழிகளில் காணலாம் ? வழிகளை கூறவும்.

If the lines
$$\frac{x-x_1}{l_1} = \frac{y-y_1}{m_1} = \frac{z-z_1}{n_1}$$
 and $\frac{x-x_2}{l_2} = \frac{y-y_2}{m_2} = \frac{z-z_2}{n_2}$ lie on the same

plane, then write the number of ways to find the Cartesian equation of the above plane and explain in detail.

[திருப்புக / Turn over

(eg) tes es e 🖟 mògnis 2cm p = 1. - i erafisi

பகுதி – IV / PART - IV ் பிர்ப்படுக்க கொடிய இதி இந்த இ

குறிப்பு : அனைத்து வினாக்களுக்கும் விடையளிக்கவும்.

7x5 = 35

Note: Answer all the questions.

41. (அ) பின்வரும் நேரியச் சமன்பாட்டுத் தொகுப்பானது ஒருங்கமைவு உடையதா என்பதை தர முறையில் ஆராய்க.

$$x - y + z = -9$$

$$2x - y + z = 4$$

$$3x - y + z = 6$$

$$4x - y + 2z = 7$$

அல்லது

i antiquo i propina estable and propina dotte i

(ஆ) $2\cos\alpha = x + \frac{1}{x}$ மற்றும் $2\cos\beta = y + \frac{1}{y}$ எனில்

(i)
$$\frac{x^{m}}{y^{n}} - \frac{y^{n}}{x^{m}} = 2i \sin(m\alpha - n\beta)$$

(ii)
$$x^m y^n + \frac{1}{x^m y^n} = 2\cos(m\alpha + n\beta)$$
 என நிறுவுக. இதி நடித்த ந

(a) Test the consistency of the following system of linear equations by rank method.

$$x - y + z = -9$$

$$2x - y + z = 4$$

$$3x - y + z = 6$$

$$4x - y + 2z = 7$$

OR

(b) If $2\cos\alpha = x + \frac{1}{x}$ and $2\cos\beta = y + \frac{1}{y}$, show that:

(i)
$$\frac{x^{m}}{y^{n}} - \frac{y^{n}}{x^{m}} = 2i \sin(m\alpha - n\beta)$$

(ii)
$$x^{m}y^{n} + \frac{1}{x^{m}y^{n}} = 2\cos(m\alpha + n\beta)$$

tribo of reposit a transposit the point

42. (அ) $\cos x$ -ன் வரைபடத்தை $[0,\pi]$ என்ற இடைவெளியிலும் மேலும் $\cos^{-1} x$ -ன் வரைபடத்தை [-1,1] என்ற இடைவெளியிலும் வரைக.

அல்லது

- (ஆ) (1, 1), (2, -1) மற்றும் (3, 2) என்ற மூன்று புள்ளிகள் வழிச்செல்லும் வட்டத்தின் சமன்பாடு காண்க.
- (a) Draw the graph of $\cos x$ in $[0, \pi]$ and $\cos^{-1} x$ in [-1, 1].

OR

- (b) Find the equation of the circle passing through the points (1, 1), (2, -1) and (3, 2).
- 43. (அ) தரைமட்டத்திலிருந்து 7.5 மீ உயரத்தில் தரைக்கு இணையாகப் பொருத்தப்பட்ட ஒரு குழாயிலிருந்து வெளியேறும் நீர் தரையைத் தொடும் பாதை ஒரு பரவளையத்தை ஏற்படுத்துகிறது. மேலும் இந்தப் பரவளையப் பாதையின் முனை குழாயின் வாயில் அமைகிறது. குழாய் மட்டத்திற்கு 2.5 மீ கீழே நீரின் பாய்வானது குழாயின் முனை வழியாகச் செல்லும் நிலை குத்துக் கோட்டிற்கு 3 மீ தூரத்தில் உள்ளது எனில் குத்துக் கோட்டிலிருந்து எவ்வளவு தூரத்திற்கு அப்பால் நீரானது தரையில் விழும் என்பதைக் காண்க.

வாகள் இந்த ஆம்மாக சிமாக்கி அல்லது. இதை முடிகெக்கத்

- (ஆ) வெக்டர் முறையில் $\cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta$ என நிறுவுக.
- (a) Assume that water issuing from the end of a horizontal pipe, 7.5 m above the ground, describes a parabolic path. The vertex of the parabolic path is at the end of the pipe. At a position 2.5 m below the line of the pipe, the flow of water has curved outward 3 m beyond the vertical line through the end of the pipe. How far beyond this vertical line will the water strike the ground?

OR

(b) By vector method, prove that, $\cos(\alpha + \beta) = \cos\alpha \cos\beta - \sin\alpha \sin\beta$.

B [திருப்புக / Turn over

(அ) (0,1,-5) என்ற புள்ளி வழிச் செல்லும் $\vec{r} = (\hat{i}+2\hat{j}-4\hat{k}) + s(2\hat{i}+3\hat{j}+6\hat{k})$ மற்றும் $\vec{r} = (\hat{i} - 3\hat{j} + 5\hat{k}) + t(\hat{i} + \hat{j} - \hat{k})$ என்ற கோடுகளுக்கு இணையாக உள்ளதுமான தளத்தின் வெக்டர் மற்றும் கார்டீசியன் சமன்பாடுகளைக்

அல்லது

(ஆ) மதிப்பிடுக :
$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1+a^x} dx$$

Find the vector and Cartesian equation of the plane passing through the point (0, 1, -5) and parallel to the straight lines

$$\overrightarrow{\mathbf{r}} = (\widehat{i} + 2\widehat{j} - 4\widehat{k}) + \mathbf{s}(2\widehat{i} + 3\widehat{j} + 6\widehat{k}) \text{ and } \overrightarrow{\mathbf{r}} = (\widehat{i} - 3\widehat{j} + 5\widehat{k}) + \mathbf{t}(\widehat{i} + \widehat{j} - \widehat{k})$$

(b) Evaluate:
$$\int_{-\pi}^{\pi} \frac{\cos^2 x}{1 + a^x} dx$$

(அ) வட திசையிலிருந்து ஒரு செங்கோண சந்திப்பை அணுகும் ஒரு காவல்துறை 45. வாகனம் வேகமாகச் சென்று திரும்பி கிழக்கு நோக்கிச் செல்லும் ஒரு மகிழுந்தை துரத்துகிறது. சாலை சந்திப்பின் வடக்கே 0.6 கி.மீ. தொலைவில் காவல் துறையின் வாகன்மும் கிழக்கே 0.8 கி.மீ. தொலைவில் மகிழுந்தும் உள்ள பொழுது, மின்காந்த அலைக் கருவியின் துணை கொண்டு காவல்துறை தங்களது வாகனத்திற்கும் மகிழுந்துக்கும் இடைப்பட்ட தூரம் மணிக்கு 20 கி.மீ. வீதத்தில் அதிகரிக்கிறது எனத் தீர்மானிக்கின்றனர். காவல்துறை வாகனம் மணிக்கு 60 கி.மீ. வேகத்தில் நகர்கிறது எனில் மகிழுந்தின் வேகம் என்ன ?

அல்லது

- $(\mathfrak{A})y = |\cos x|$ என்ற வளைவரை x -அச்சு, கோடுகள் x = 0 மற்றும் $x = \pi$ ஆகியவற்றால் அடைபடும் அரங்கத்தின் பரப்பைக் காண்க.
- A police jeep, approaching an orthogonal intersection from the northern direction, (a) is chasing a speeding car that has turned and moving straight east. When the jeep is 0.6 km north of the intersection and the car is 0.8 km to the east, the police determine with a radar that the distance between the jeep and the car is increasing at 20 km/hr. If the jeep is moving at 60 km/hr at the instant of measurement, what is the speed of the car?

OR

Find the area of the region bounded by x-axis, the curve $y = |\cos x|$, the lines (b) x=0 and $x=\pi$.

46. (அ) பரப்பளவு 196 சதுர அலகுகள் கொண்ட ஒரு சதுர தகட்டினை அதன் ஒவ்வொரு மூலையிலும் சமமான சிறு சதுரங்களை நீக்கி, மடித்து ஒரு பெட்டியாக மாற்றப்படுகிறது. பெட்டியின் கன அளவு உச்சமாக இருக்க வேண்டுமாயின் வெட்டி நீக்கப்பட்ட சதுரத்தின் பக்கத்தின் அளவு 7/3 என நிரூபிக்க.

அல்லது

- (ஆ) நிறை M உடைய ஒரு தானியங்கி இயந்திரத்தின் இயக்கியால் உருவாக்கப்படும் மாறாத விசை F எனில் அதனுடைய திசைவேகம் V என்பது $M\frac{dV}{dt}=F-kV$ எனும் சமன்பாட்டால் குறிக்கப்படுகிறது. k என்பது மாறிலியாகும். t=0 எனும் போது V=0 எனில் $V=\frac{F}{k}\left(1-e^{\frac{-kt}{M}}\right)$ என நிரூபிக்க.
- (a) A square shaped thin material with area 196 sq. units to make into an open box by cutting small equal squares from the four corners and folding the sides upward. Prove that the length of the side of a removed square is ⁷/₃ when the volume of the box is maximum.

OR

(b) If F is the constant force generated by the motor of an automobile of mass M, its velocity V is given by $M\frac{dV}{dt}=F-kV$, where k is a constant. Prove that $V=\frac{F}{k}\left(1-e^{\frac{-kt}{M}}\right) \text{ when } t=0 \text{ and } V=0.$

[திருப்புக / Turn over

47. (அ) ஒரு துப்பறிவாளர் புலன் விசாரணையின் போது, ஒருவரின் உயிரற்ற உடலை சரியாக பிற்பகல் 8 மணிக்கு காண்கிறார். முன்னெச்சரிக்கையாக துப்பறிவாளர் அவ்வுடலின் வெப்பநிலையை அளந்து 70°F எனக் குறித்துக் கொள்கிறார். 2 மணி நேரம் கழித்து அந்த உடலின் வெப்பநிலை 60°F ஆக இருப்பதைக் காண்கிறார். உடல் இருந்த அறையின் வெப்பநிலை 50°F ஆகும், மற்றும் இறப்பதற்கு முன்பு அந்நபரின் உடல் வெப்பநிலை 98.6°F எனில், அந்நபர் இறந்த நேரம் பிற்பகல் 5 மணி 26 நிமிடம் என நிரூபிக்க (தோராயமாக).

$$\left[\frac{\log(2.43)}{\log(2)} \simeq 1.28\right]$$

அல்லது

- (ஆ) மூன்று சீரான நாணயங்கள் ஒரு முறை சுண்டப்படுகின்றன. தலைகளின் எண்ணிக்கை நிகழ்விற்கு, நிகழ்தகவு நிறை சார்பு, சராசரி மற்றும் பரவற்படி காண்க. மேலும் ஈருறுப்பு பரவல் மூலம் இவற்றினை சோதிக்க.
- (a) In an investigation, a corpse was found by a detective at exactly 8 p.m. Being alert, the detective also measured the body temperature and found it to be 70°F. Two hours later, the detective measured the body temperature again and found it to be 60°F. If the room temperature is 50°F, and assuming that the body temperature of the person before death was 98.6°F, prove that the time of death

is 5.26 p.m. (5 hrs 26 minutes) (app.).
$$\left[\frac{\log(2.43)}{\log(2)} \approx 1.28\right]$$

OR

(b) Three fair coins are tossed once. Find the probability mass function, mean and variance for number of heads occurred. Verify the results by binomial distribution.

and any till made 17 mass (Jac)