MATHEMATICS

MODEL OUESTION PAPER – 1

Time Allowed:	15 Min	+ 3.00	Hours	
---------------	--------	--------	-------	--

[Maximum Marks:90

Instructions:

- Check the question paper for fairness of printing. If there is any (a) lack of fairness, inform the Hall Supervisor immediately.
- Use Blue or Black ink to write and underline and pencil to draw (b) diagrams.

PART - I

Note:

(i) All questions are compulsory.

 $20 \times 1 = 20$

- (ii) Choose the correct or most suitable answer from the given four alternatives. Write the option code and the corresponding answer.
- 1. If A and B are orthogonal, then $(AB)^{T}(AB)$ is

(a) A

(b) *B*

(c) I

2. If A is a non-singular matrix such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$, then $(A^T)^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$

(a) $\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ (c) $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$

 $(d) \begin{vmatrix} 5 & -2 \\ 3 & -1 \end{vmatrix}$

3. $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ is

(c) -1

(d) i

4. The product of all four values of $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{\frac{1}{4}}$ is

(a) -2

(b) -1

(d) 2

5. A polynomial equation in x of degree n always has

(a) n distinct roots

(b) n real roots

(c) n imaginary roots

(d) at most one root.

6. If $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$, then $\cos^{-1} x + \cos^{-1} y$ is equal to

(a) $\frac{2\pi}{2}$

(b) $\frac{\pi}{2}$

(c) $\frac{\pi}{6}$

7. The equation of the directrix of the parabola $y^2 = x + 4$ is

(a) $x = \frac{15}{4}$ (b) $x = -\frac{15}{4}$

(c) $x = -\frac{17}{4}$

(d) $x = \frac{17}{4}$

	·		
8.	The circle $x^2 + y^2 = 4x + 8y + 5$ intersec	cts the line $3x - 4y = m$ at t	wo distinct points if
	(a) $15 < m < 65$ (b) $35 < m < 85$	(c) $-85 < m < -35$	(d) $-35 < m < 15$
9.	If the line $\frac{x-1}{3} = \frac{y-2}{4} = \frac{z-3}{\lambda}$ is pe	erpendicular to the plane	$\vec{r} \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) = 0$, then the
	value of λ is		
	(a) $-\frac{13}{4}$ (b) -13	(c) -4	(d) $-\frac{1}{4}$
10.	Distance from the origin to the plane 3:	x - 6y + 2z + 7 = 0 is	
	(a) 0 (b) 1	(c) 2	(d) 3
11.	The curve $y = ax^4 + bx^2$ with $ab > 0$		
	(a) has no horizontal tangent	(b) is concave up	
	(c) is concave down	(d) has no points of infl	ection
12.	The function $f(x) = \sqrt[3]{4-x^2}$ has a v		A district of the second of th
	(a) x = 0	(b) $x = 2$ and $x = -2$	
	(c) $x = 0, x = 2$ and $x = -2$	(d) $x = 1$ and $x = -1$	
13.	If we measure the side of a cube to calculation of the volume is	be 4 cm with an error of	of 0.1 cm, then the error in our
	(a) 0.4 cu.cm (b) 0.45 cu.cm	(c) 2 cu.cm	(d) 0.8 cu.cm
14.	$\int_{0}^{\infty} e^{-3x} x^2 dx =$		
	(a) $\frac{7}{27}$ (b) $\frac{5}{27}$	(c) $\frac{4}{27}$	(d) $\frac{2}{27}$
15.	The value of $\int_{0}^{\pi} (\sin x + \cos x) dx$ (a) 1 (b) 2		
	(a) 1 (b) 2	(c) 0	(d) 4
16.	P is the amount of certain substance substance is proportional to the amount	ce left in after time t. In tremaining, then (wher	If the rate of evaporation of the $k > 0$
	(a) $P = ce^{kt}$ (b) $P = ce^{-kt}$	e de la	(d) $Pt = c$

(a)
$$P = ce^k$$

(b)
$$P = ce^{-kt}$$

(c)
$$P = ckt$$

(d)
$$Pt = c$$

17. The solution of the differential equation

(a)
$$x\phi\left(\frac{y}{x}\right) = k$$

(b)
$$\phi\left(\frac{y}{x}\right) = kx$$

(a)
$$x\phi\left(\frac{y}{x}\right) = k$$
 (b) $\phi\left(\frac{y}{x}\right) = kx$ (c) $y\phi\left(\frac{y}{x}\right) = k$

(d)
$$\phi\left(\frac{y}{x}\right) = ky$$

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

18. A rod of length 2l is broken into two pieces at random. The probability density function of the shorter of the two pieces is

$$f(x) = \begin{cases} \frac{1}{l} & 0 < x < l \\ 0 & l \le x < 2l \end{cases}$$

The mean and variance of the shorter of the two pieces are respectively

- (a) $\frac{l}{2}$, $\frac{l^2}{2}$

- (b) $\frac{l}{2}$, $\frac{l^2}{6}$ (c) l, $\frac{l^2}{12}$ (d) $\frac{l}{2}$, $\frac{l^2}{12}$
- 19. If X is a binomial random variable with expected value 6 and variance 2.4, Then $P\{X=5\}$ is
- (a) $\binom{10}{5} \left(\frac{3}{5}\right)^6 \left(\frac{2}{5}\right)^4$ (b) $\binom{10}{5} \left(\frac{3}{5}\right)^5$ (c) $\binom{10}{5} \left(\frac{3}{5}\right)^4 \left(\frac{2}{5}\right)^6$ (d) $\binom{10}{5} \left(\frac{3}{5}\right)^5 \left(\frac{2}{5}\right)^5$
- 20. The operation * is defined by $a*b = \frac{ab}{7}$. It is it not a binary operation on
 - (a) \mathbb{Q}^+
- (b) Z

(d) C

PART - II

Note: (i) Answer any SEVEN questions.

 $7 \times 2 = 14$

- (ii) Question number 30 is compulsory.
- 21. Prove that $\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$ is orthogonal.
- 22. Find the modulus of $\frac{1-i}{3+i} + \frac{4i}{5}$.
- 23. Find the value of $\tan^{-1} \left(\tan \left(-\frac{\pi}{6} \right) \right)$
- 24. Find the centre and radius of the circle $3x^2 + 3y^2 12x + 6y 9 = 0$.
- 25. Verify whether the line $\frac{x-3}{-4} = \frac{y-4}{-7} = \frac{z+3}{12}$ lies in the plane 5x-y+z=8.
- 26. Evaluate: $\int_{0}^{\infty} e^{-|x|} dx$
- 27. Determine the order and degree (if exists) of the differential equation

$$\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = x\sin\left(\frac{d^2y}{dx^2}\right).$$

GREEN GARDEN MATRIC, HR. SEC. SCHOOL Perundurai R.S. 311 PH: 9486379461, 8344933377

28. Suppose a discrete random variable can only take the values 0, 1, and 2. The probability mass
$$\frac{x^2+1}{x^2+1}$$
, for $x=0,1,2$

function is defined by
$$f(x) = \begin{cases} \frac{x^2 + 1}{k}, & \text{for } x = 0, 1, 2 \\ 0, & \text{otherwise} \end{cases}$$
. Find the value of k .

29. Verify the associative property under the binary operation
$$*$$
 defined by $a*b=a^b, \forall a,b \in \mathbb{N}$

30. Evaluate
$$\lim_{x\to 0} \frac{xe^x - \sin x}{x}$$

PART-III

Note:

(i) Answer any SEVEN questions.

 $7\times3=21$

- (ii) Question number 40 is compulsory.
- 31. Find the rank of the matrix by row reduction method: $\begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11 \end{bmatrix}$
- 32. Show that the equation $z^3 + 2\overline{z} = 0$ has five solutions.
- 33. Solve the equation $x^3 5x^2 4x + 20 = 0$.
- 34. If the equation $3x^2 + (3-p)xy + qy^2 2px = 8pq$ represents a circle, find p and q. Also determine the centre and radius of the circle.
- 35. Find the points on the curve $y = x^3 6x^2 + x + 3$ where the normal is parallel to the line x + y = 1729..
- 36. If $u(x, y) = \frac{x^2 + y^2}{\sqrt{x + y}}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{3}{2}u$.
- 37. Evaluate : $\int_{0}^{1} \frac{2x}{1+x^2} dx$
- 38. Solve: $\cos x \cos y \, dy \sin x \sin y \, dx = 0$
- 39. If μ and σ^2 are the mean and variance of the discrete random variable X, and E(X+3)=10 and $E(X+3)^2=116$, find μ and σ^2 .
- 40. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors prove that $\left[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}\right] = 2\left[\vec{a}, \vec{b}, \vec{c}\right]$

PART - IV

Note: Answer all the questions.

 $7 \times 5 = 35$

41. (a) Examine the consistency of the system of equations 4x+3y+6z=25, x+5y+7z=13, 2x+9y+z=1. If it is consistent then solve.

(OR)

(b) If
$$z = x + iy$$
 and $\arg\left(\frac{z - i}{z + 2}\right) = \frac{\pi}{4}$, then show that $x^2 + y^2 + 3x - 3y + 2 = 0$.

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Pellindurai R.S.

Model Question Papers

PH: 9486379461, 8344933377

- 42. (a) Solve the equation: $6x^4 35x^3 + 62x^2 35x + 6 = 0$. (OR)
 - (b) At a water fountain, water attains a maximum height of 4m at horizontal distance of 0.5 m from its origin. The flow is from the origin and the path of water is a parabola open upwards, find the height of water at a horizontal distance of 0.75m from the point of origin.
- 43. (a) If $\vec{a} = \hat{i} \hat{j}$, $\vec{b} = \hat{i} \hat{j} 4\hat{k}$, $\vec{c} = 3\hat{j} \hat{k}$ and $\vec{d} = 2\hat{i} + 5\hat{j} + \hat{k}$, verify that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{b}, \vec{d}]\vec{c} [\vec{a}, \vec{b}, \vec{c}]\vec{d}$

(OR)

- (b) Find the vector and Cartesian equations of the plane $\vec{r} = (6\hat{i} \hat{j} + \hat{k}) + s(-\hat{i} + 2\hat{j} + \hat{k}) + t(-5\hat{i} 4\hat{j} 5\hat{k}).$
- 44. (a) A hollow cone with base radius a cm and height b cm is placed on a table. Show that the volume of the largest cylinder that can be hidden underneath is $\frac{4}{9}$ times volume of the cone.

(OR)

- (b) Expand $\log(1+x)$ as a Maclaurin's series upto 4 non-zero terms for $-1 < x \le 1$.
- 45. (a) If u = xyz, $x = e^{-t}$, $y = e^{-t} \sin t$, $z = \sin t$ find $\frac{du}{dt}$

(OR)

- (b) Solve: $(y e^{\sin^{-1}x}) \frac{dx}{dy} + \sqrt{1 x^2} = 0$.
- 46. (a) A multiple choice examination has ten questions, each question has four distractors with exactly one correct answer. Suppose a student answers by guessing and if X denotes the number of correct answers, find (i) binomial distribution (ii) probability that the student will get seven correct answers (iii) at least one correct answer.

(OR)

- (b) Show that $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$.
- 47. (a) Find the area enclosed by the curve $y = -x^2$ and the straight line x + y + 2 = 0.

(OR)

(b) If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$ and 0 < x, y, z < 1, then show that $x^2 + y^2 + z^2 + 2xyz = 1$.

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S₃₁₃ PH: 9486379461, 8344933377

HIGHER SECONDARY SECOND YEAR

MATHEMATICS

MODEL QUESTION PAPER - 2

Time Allowed: 15 Min + 3.00 Hours

[Maximum Marks:90

Instructions:

- Check the question paper for fairness of printing. If there is any (a) lack of fairness, inform the Hall Supervisor immediately.
- Use Blue or Black ink to write and underline and pencil to draw (b) diagrams.

PART - I

Note:

(i) All questions are compulsory.

 $20 \times 1 = 20$

1. If
$$A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$$
, then $9I - A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$

- (a) A^{-1}
- (b) $\frac{A^{-1}}{2}$
- (c) $3A^{-1}$
- (d) $2A^{-1}$

2. If
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
, then adj(adj A) is

(a)
$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} -3 & 3 & -4 \\ -2 & 3 & -4 \\ 0 & 1 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4 \end{bmatrix}$

3. The area of the triangle formed by the complex numbers z, iz and z+iz in the Argand's diagram is

- (a) $\frac{1}{2}|z|^2$
- (b) $|z|^2$
- (c) $\frac{3}{2}|z|^2$

4. All complex numbers z which satisfy the equation $\left| \frac{z-6i}{z+6i} \right| = 1$ lie on the

- (a) real axis
- (b) imginary axis (c) circle
- (d) ellipse

5. If $\cot^{-1} 2$ and $\cot^{-1} 3$ are two angles of a triangle, then the third angle is

- (b) $\frac{3\pi}{4}$
- (c) $\frac{\pi}{\epsilon}$
- (d) $\frac{\pi}{2}$

6. The range of $\sec^{-1} x$ is

- (a) $\left[0,\pi\right] \setminus \left\{\frac{\pi}{2}\right\}$ (b) $\left[0,\pi\right]$ (c) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ (d) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$

7. P(x, y) be any point on $16x^2 + 25y^2 = 400$ with foci $F_1(3, 0)$ and $F_2(-3, 0)$ then $PF_1 + PF_2$ is

(a) 8

(b) 6

(c) 10

(d) 12

Model Question Papers

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

- 0	If the two tengents dr	rawn from a point P to	the parabola $v^2 = 4$.	x are at right angles then the
	locus of P is	awn nom a pome : "	o une paracera y	
	(a) $2x + 1 = 0$	(b) $x = -1$	(c) $2x - 1 = 0$	(d) x = 1
9				s its distance from the line
	$x = -\frac{9}{2}$ is			
	(a) a parabola	(b) a hyperbola		(d) a circle
10	. The angle between the	e line $\vec{r} = (\hat{i} + 2\hat{j} - 3\hat{k})$	$+t(2\hat{i}+\hat{j}-2\hat{k})$ and	d the plane $\vec{r} \cdot (\hat{i} + \hat{j}) + 4 = 0$
	is			(I) 000
	(a) 0°	(b) 30°	(c) 45°	(d) 90°
11.	If the rate of increase when the radius is 20 of		cle is 5 cm/sec, then t	he rate of increase of its area
	(a) 10π	(b) 20π	(c) 200π	(d) 400π
12.	.Angle between $y^2 = 1$	x and $x^2 = y$ at the or	igin is	
	(a) $\tan^{-1} \frac{3}{4}$	(b) $\tan^{-1}\left(\frac{4}{3}\right)$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{4}$
13.	If $w(x, y) = x^y, x > 0$,	then $\frac{\partial w}{\partial x}$ is equal to		
	(a) $x^y \log x$	(b) $y \log x$	(c) yx^{y-1}	(d) $x \log y$
	a 1 . π		19-7152.2-	garjo karif ^{ari} adi ya
14.	$\int_{0}^{a} \frac{1}{4+x^{2}} dx = \frac{\pi}{8} \text{ then } a$	a is	•	
	(a) 4	(b) 1	1.00 3	(d) 2
				x = 4 and $x - axis$ in the first
	11	17	28	31
	(a) $\frac{11}{3}$	(b) $\frac{17}{3}$	(c) $\frac{20}{3}$	(d) $\frac{31}{3}$
				s a circle, then the value of a is
	(a) 2	(b) -2	(c) 1	(d) -1
17.	` '		• •	p = 0.8 then standard deviation
	(a) 6	(b) 4	(c) 3	(d) 2
18.	Suppose that X takes o	n one of the values 0,	, 1, and 2. If for some	
	P(X=i) = k P(X=i)	-1) for $i = 1, 2$ and P	$(X=0)=\frac{1}{7}$. Then th	
	(a) 1	(b) 2	(a) 3	(d) 4
	(a) 1	(b) 2	(c) 3	(u) 4

Perundurai R.S. PH: 9486379461, 8344933377

- 19. Which one is the inverse of the statement $(p \lor q) \to (p \land q)$?
 - (a) $(p \land q) \rightarrow (p \lor q)$

(b) $\neg (p \lor q) \rightarrow (p \land q)$

(c) $(\neg p \lor \neg q) \to (\neg p \land \neg q)$

- (d) $(\neg p \land \neg q) \rightarrow (\neg p \lor \neg q)$
- 20. Which one of the following statements has the truth value T?
 - (a) $\sin x$ is an even function.
 - (b) Every square matrix is non-singular
 - (c) The product of complex number and its conjugate is purely imaginary
 - (d) $\sqrt{5}$ is an irrational number

PART - II

Note: (i) Answer any SEVEN questions.

 $7\times2=14$

 $7 \times 3 = 21$

- (ii) Question number 30 is compulsory.
- 21. Find z^{-1} , if z = (2+3i)(1-i)
- 22. Find the square root of -6+8i
- 23. Find the principal value of $\csc^{-1}(-\sqrt{2})$
- 24. Find the equation of the parabola whose end points of the latus rectum are (4,-8) and (4,8), centre is (0,0) and open rightward.
- 25. A particle is fired straight up from the ground to reach a height of s feet in t seconds, when $s = 128t 16t^2$. Compute the maximum height of the particle reached?
- 26. If $f(x,y) = x^3 3x^2 + y^2 + 5x + 6$, then find f_x at (1,-2)
- 27. Find the differential equation of the curve represented by $xy = ae^x + be^{-x} + x^2$.
- 28. Establish the equivalence property: $p \rightarrow q \equiv \neg p \lor q$
- 29. Let * be defined on \mathbb{R} by a*b=a+b+ab-7. Is *binary on \mathbb{R} .
- 30. Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{\sin x}{1 + \cos^2 x} dx$

PART-III

Note:

- (i) Answer any SEVEN questions.
- (ii) Question number 40 is compulsory.
- 31. Find the value of $\sum_{k=1}^{8} \left(\cos \frac{2k\pi}{9} + i \sin \frac{2k\pi}{9} \right).$

Model Question Papers

316

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

- 32. Show that the equation $x^9 5x^5 + 4x^4 + 2x^2 + 1 = 0$ has at least 6 imaginary solutions.
- 33. Prove that the length of the latus rectum of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$.
- 34. Find the altitude of a parallelepiped determined by the vectors $\vec{a} = -2i + 5j + 3k$, $\vec{b} = i + 3j 2k$ and $\vec{c} = -3i + j + 4k$ if the base is taken as the parallelogram determined by \vec{b} and \vec{c} .
- 35. Examine the concavity for the function $f(x) = x^4 4x^3$.
- 36. Show that the value in the conclusion of the mean value theorem for $f(x) = Ax^2 + Bx + C$ on any interval [a,b] is $\frac{a+b}{2}$.
- 37. Evaluate: $\int_{0}^{\frac{\pi}{2}} (\sin^2 x + \cos^4 x) dx$.
- 38. Assume that a spherical rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
- 39. The probability distribution of a random variable is given below

X = x	0	1	2	3	4	5	6	7
P(X=x)	0	k	2k	2k	3k	k^2	$2 k^2$	$7k^2+k$

Then find P(0 < X < 4).

40. If
$$A = \begin{bmatrix} 3 & -2 \\ \lambda & -2 \end{bmatrix}$$
, find the value of λ so that $A^2 = \lambda A - 2I$.

PART – IV

Note: Answer all the questions.

continuous in the part of the restriction of $7 \times 5 = 35$

41. (a) Investigate for what values of λ and μ the system of linear equations x+2y+z=7, $x+y+\lambda z=\mu$, x+3y-5z=5 has (i) no solution (ii) a unique solution

(OR)

- (b) Find the sum of squares of the roots of the equation $2x^4 8x^3 + 6x^2 3 = 0$.
- 42. (a) Evaluate: $\sin \left(\sin^{-1} \left(\frac{3}{5} \right) + \sec^{-1} \left(\frac{5}{4} \right) \right)$

(OR)

- (b) Find the foci and vertices of the hyperbola $4x^2 24x 25y^2 + 250y 489 = 0$.
- 43. (a) Find the vector and cartesian equations of the plane passing through the point (1,-2,4) and

perpendicular to the plane x+2y-3z=11 and parallel to the line $\frac{x+7}{3}=\frac{y+3}{-1}=\frac{z}{1}$.

- (b) Find the foot of the perpendicular drawn from the point (5,4,2) to the line $\frac{x+1}{2} = \frac{y-3}{3} = \frac{z-1}{-1}$. Also, find the equation of the perpendicular.
- 44. (a) Find intervals of concavity and points of inflexion for the function

$$f(x) = \frac{1}{2}(e^x - e^{-x})$$

(OR)

- (b) Evaluate: $\int_{0}^{2a} x^2 \sqrt{2ax x^2} dx$
- 45. (a) Find the area of the region bounded between the parabola $x^2 = y$ and the curve y = |x|. (OR)
 - (b) The equation of electromotive force for an electric circuit containing resistance and self-inductance is $E = Ri + L\frac{di}{dt}$, where E is the electromotive force given to the circuit, R the resistance and L, the coefficient of induction. Find the current i at time t when E = 0.
- 46. (a) The probability density function of X is given by $f(x) = \begin{cases} ke^{-\frac{x}{3}} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$

Find (i) the value of k (ii) P(X < 3).

(OR)

- (b) Verify whether the compound proposition $(p \rightarrow q) \leftrightarrow (\neg p \rightarrow q)$ is a tautology or contradiction or contingency
- 47. (a) Solve $z^4 = 1 \sqrt{3}i$

(OR)

(b) If $f(x,y) = \log \sqrt{x^2 + y^2}$, show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$

GREEN GARDEN MATRIC. HR. SEC. SCHOOL Perundurai R.S. PH: 9486379461, 8344933377

HIGHER SECONDARY SECOND YEAR

MATHEMATICS

MODEL QUESTION PAPER – 3

Time Allowed: 15 Min + 3.00 Hours

[Maximum Marks:90

Instructions:

- Check the question paper for fairness of printing. If there is any (a) lack of fairness, inform the Hall Supervisor immediately.
- (b) Use Blue or Black ink to write and underline and pencil to draw diagrams.

PART - I

Note:

(i) All questions are compulsory.

 $20 \times 1 = 20$

- (ii) Choose the correct or most suitable answer from the given four alternatives. Write the option code and the corresponding answer.
- 1. If $A = \begin{vmatrix} 1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1 \end{vmatrix}$ and AB = I, then B = I
 - (a) $\left(\cos^2\frac{\theta}{2}\right)A$ (b) $\left(\cos^2\frac{\theta}{2}\right)A^T$ (c) $(\cos^2\theta)I$
- (d) $\left(\sin^2\frac{\theta}{2}\right)A$
- 2. If $x^a y^b = e^m, x^c y^d = e^n, \Delta_1 = \begin{vmatrix} m & b \\ n & d \end{vmatrix}, \Delta_2 = \begin{vmatrix} a & m \\ c & n \end{vmatrix}, \Delta_3 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$, then the values of x and y are respectively,

 - (a) $e^{(\Delta_2/\Delta_1)}$, $e^{(\Delta_3/\Delta_1)}$ (b) $\log(\Delta_1/\Delta_3)$, $\log(\Delta_2/\Delta_3)$
 - (c) $\log(\Delta_2/\Delta_1), \log(\Delta_3/\Delta_1)$
- (d)) $e^{(\Delta_1/\Delta_3)}, e^{(\Delta_2/\Delta_3)}$
- 3. If z = x + iy is a complex number such that |z + 2| = |z 2| then the locus of z is
 - (a) real axis
- (b) imaginary axis
- (c) ellipse
- (d) circle
- 4. The principal argument of the complex number $\frac{\left(1+i\sqrt{3}\right)^2}{4i\left(1-i\sqrt{3}\right)}$ is
 - (a) $\frac{2\pi}{2}$

(c) $\frac{5\pi}{6}$

- 5. The polynomial equation $x^3 + 2x + 3 = 0$ has
 - (a) one negative and two real roots
- (b) one positive and two imaginary roots

(c) three real roots

(d) no solution

6. $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}$	$\left(\frac{2}{9}\right)$ is equal to	· · · · · · · · · · · · · · · · · · ·	
(a) $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$	(b) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$	(c) $\frac{1}{2} \tan^{-1} \left(\frac{3}{5} \right)$	(d) $\tan^{-1}\left(\frac{1}{2}\right)$
7. The vertex of the	e parabola $x^2 = 8y - 1$ is	3	
(a) $\left(-\frac{1}{8},0\right)$	(b) $\left(\frac{1}{8},0\right)$	(c) $\left(-6, \frac{9}{2}\right)$	$(d)\left(\frac{9}{2},-6\right)$
8. Area of the greate	est rectangle inscribed in	the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is	S
(a) 2 <i>ab</i>	(b) <i>ab</i>	(c) \sqrt{ab}	(d) $\frac{a}{b}$
9. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$,	$\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \hat{i}$ and \vec{c}	$(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then t	he value of $\lambda + \mu$ is
(a) 0	(b) 1	(c) 6	(d) 3
	of the point $(1,1,1)$ from the values of k are	m the origin is half of	its distance from the
(a) ± 3	(b) ±6	(c) - 3, 9	(d) 3, -9
11. If $x + y = k$ is a n	normal to the parabola	$y^2 = 16x$, then the value of	of k is
(a) 3	,	(c) 12	(d) 15
12. The number given	by the Mean value theo	orem for the function $\frac{1}{x}$, x	\in [1,9] is
(a) 2		(c) 3	` '
X 1	· · · · · · · · · · · · · · · · · · ·	ren by	V *
$(a) \frac{2}{\left(x+1\right)^2} dx$	$(b) -\frac{2}{\left(x+1\right)^2} dx$	(c) $\frac{x}{(x+1)^2}dx$	$(d) \frac{-x}{(x+1)^2} dx$
14. If $\int_{0}^{x} f(t) dt = x +$	$\int_{x}^{1} tf(t)dt$, then the val	ue of $f(1)$ is	
(a) $\frac{1}{2}$	(b) 2	(c) 1	(d) $\frac{3}{4}$
15. The value of $\int_{0}^{1} \log$	$\left(\frac{x}{1-x}\right)dx$		
(a) 0	(b) 2	(c) 4	(d) 5

the plane

14.

15.

	• • • • • • • • • • • • • • • • • • • •
16. The degree of the differential equation $y(x) = 1 + \frac{dy}{dx} + \frac{1}{1 \cdot 2} \left(\frac{dy}{dx}\right)^2$	$+\frac{1}{1\cdot 2\cdot 3}\left(\frac{dy}{dx}\right)^3 + \dots \text{ is}$
(c) 3 (c) 1	(d) 4
17. The population P in any year t is such that the rate of increase in	the population is proportional
to the population. Then $(k > 0)$	to the second
(a) $P = ce^{kt}$ (b) $P = ce^{-kt}$ (c) $P = ckt$	(d) $P = c$
18. If the mean of a binomial distribution is 5 and its variance is 4, t	hen the value of n and p are
(a) $\left(\frac{1}{5}, 25\right)$ (b) $\left(25, \frac{1}{5}\right)$ (c) $\left(25, \frac{4}{5}\right)$	$(d)\left(\frac{4}{5},25\right)$
19. The probability function of a random variable is defined as:	
19. The probability function of a function x -2 -1 0 1 2	*
	, Alverta des
$f(x) \qquad k \qquad 2k \qquad 3k \qquad 4k \qquad 5k$	
Then $E(X)$ is equal to:	,
(a) $\frac{1}{15}$ (b) $\frac{1}{10}$ (c) $\frac{1}{3}$	(d) $\frac{2}{3}$
20. Which one is the inverse of the statement $(p \lor q) \to (p \land q)$?	
(a) () () (a) (a)	(q)
(a) (p · · · · ·) (
(c) $(\neg p \lor \neg q) \to (\neg p \land \neg q)$ (d) $(\neg p \land \neg q) \to (\neg p \land \neg q)$	•
TARIE I	$7\times2=14$
Note: (i) Answer any SEVEN questions.	7, 7 San
(ii) Question number 30 is compulsory.	
	1
21. Show that $(2+i\sqrt{3})^{10} + (2-i\sqrt{3})^{10}$ is real	
22. Find the value of $\sin^{-1} \left(\sin \left(\frac{5\pi}{4} \right) \right)$	and a substitute of the same of
23. Obtain the equation of the circle for which $(3,4)$ and $(2,-7)$	
24. Find the intercepts cut off by the plane $\vec{r} \cdot (6\hat{i} + 4\hat{j} - 3\hat{k}) = 12$ on	the coordinate axes.
25. For the function $f(x) = x^4 - 2x^2$, find all the values of c in (-	-2,2) such that $f'(c)=0$
26. Evaluate: $\int_{0}^{\frac{\pi}{2}} \sin^{10} x dx$.	
20. Lyaldato. I sili xax.	
GREEN GARDEN MATRIC. HR. SEC. SCHOOL	
Perundural R.S.	
PH: 9486379461, 8344933377	Model Question Papers

- 27 Show that the differential equation for the function $y = e^{-x} + mx + n$, where m and n are arbitrary constants is $e^{x} \left(\frac{d^{2}y}{dx^{2}} \right) 1 = 0$.
- 28. Find the mean of the distribution $f(x) = \begin{cases} 3e^{-3x}, & 0 < x < \infty \\ 0, & elsewhere \end{cases}$
- 29. On \mathbb{Z} , define \otimes by $(m \otimes n) = m^n + n^m : \forall m, n \in \mathbb{Z}$. Is \otimes binary on \mathbb{Z} ?
- 30. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 0 \\ 2 & 5 \end{bmatrix}$, find adj(AB).

PART-III

 $7 \times 3 = 21$

Note:

- (i) Answer any SEVEN questions.
- (ii) Question number 40 is compulsory.
- 31. Solve the following system of linear equations by matrix inversion method 2x-y=8; 3x+2y=-2
- 32. Find the value of $\frac{\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}}{\cos\frac{\pi}{3} i\sin\frac{\pi}{3}}.$
- 33. Find the equation of the hyperbola with foci $(\pm 3,5)$ and eccentricity e=2.
- 34. Find the cartesian equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot (2\hat{i} 7\hat{j} + 4\hat{k}) = 3$ and 3x 5y + 4z + 11 = 0, and the point (-2,1,3).
- 35. Prove that the function $f(x) = x \sin x$ is increasing but not strictly on the real line. Also discuss for the existence of local extrema.
- 36. If $U = \log(x^3 + y^3 + z^3)$, find $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z}$.
- 37. Evaluate: $\int_{0}^{\pi} x^{2} \cos nx dx$, where *n* is a positive integer.
- 38. Solve: $\frac{dy}{dx} = e^{x+y} + x^2 e^{x^3+y}$
- 39. The mean and variance of a binomial variate X are respectively 2 and 1.5. Find P(X = 0).
- 40. Find the magnitude and direction cosines of the moment about the point (0,-2,3) of a force $\hat{i}+\hat{j}+\hat{k}$ whose line of action passes through the origin.

Note: Answer all the questions.

- 41. (a) If $ax^2 + bx + c$ is divided by x+3, x-5 and x-1, the remainders are 21,61 and 9 respectively. Find a, b and c. (OR)
 - (b) Simplify: $\left(-\sqrt{3}+3i\right)^{31}$
- 42. (a) Solve the equation $x^4 10x^3 + 26x^2 10x + 1 = 0$. (OR)
 - (b) Solve for $x : \tan^{-1} x + 2 \cot^{-1} x = \frac{2\pi}{3}$
- 43. (a) For the ellipse $4x^2 + y^2 + 24x 2y + 21 = 0$, find the centre, vertices, foci and the length of latus rectum. (OR)
 - (b) By vector method, prove that $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$.
- 44 (a) Find the absolute extrema of the function $f(x) = 3x^4 4x^3$ on the interval [-1,2].

(OR)

- (b) For the function $f(x, y) = \frac{3x}{y + \sin x}$, find f_x, f_y , and show that $f_{xy} = f_{yx}$.
- 45 (a) Using integration find the area of the region bounded by triangle ABC, whose vertices A, B, and C are (-1,1), (3,2), and (0,5) respectively.

(OR)

- (b) Solve: $y^2 x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$
- 46. (a) The cumulative distribution function of a discrete random variable is given by

$$F(x) = \begin{cases} 0 & -\infty < x < -1 \\ 0.15 & -1 \le x < 0 \\ 0.35 & 0 \le x < 1 \\ 0.60 & 1 \le x < 2 \\ 0.85 & 2 \le x < 3 \\ 1 & 3 \le x < \infty \end{cases}$$

Find (i) the probability mass function (ii) P(X < 1) and (iii) $P(X \ge 2)$ (OR)

- (b) Using truth table check whether the statements $\neg (p \lor q) \lor (\neg p \land q)$ and $\neg p$ are logically equivalent.
- 47. (a) Find the shortest distance between the straight lines $\frac{x-6}{1} = \frac{2-y}{2} = \frac{z-2}{2}$ and $\frac{x+4}{3} = \frac{y}{-2} = \frac{1-z}{2}$. (OR)
 - (b) Prove that among all the rectangles of the given area square has the least perimeter.

HIGHER SECONDARY SECOND YEAR

MATHEMATICS

MODEL QUESTION PAPER - 4

Time Allowed: 15 Min + 3.00 Hours]

[Maximum Marks:90

Instructions:

- Check the question paper for fairness of printing. If there is any (a) lack of fairness, inform the Hall Supervisor immediately.
- Use Blue or Black ink to write and underline and pencil to draw (b) diagrams.

PART – I

Note:

(i) All questions are compulsory.

 $20 \times 1 = 20$

- (ii) Choose the correct or most suitable answer from the given four alternatives. Write the option code and the corresponding answer.
- 1. The adjoint of 3×3 matrix P is $\begin{vmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix}$, then the possible value(s) of the determinant P is

(are)

(a) 3

(b) -3

2. If $x = \frac{-1 + i\sqrt{3}}{2}$ then the value of $x^2 + x + 1$

 $\frac{1}{2}$

3. The value of $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$ is

(a) $cis \frac{2\pi}{3}$ (b) $cis \frac{4\pi}{3}$

(d) $-cis\frac{4\pi}{2}$

- 4. A polynomial equation in x of degree n always has
 - (a) *n* distinct roots
- (b) *n* real roots
- (c) *n* imaginary roots
- (d) atmost one root

5. $\sin^{-1}(\cos x) = \frac{\pi}{2} - x$ is valid for

(a) $-\pi \le x \le 0$ (b) $0 \le x \le \pi$ (c) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ (d) $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$

6. If $\cot^{-1}(\sqrt{\sin \alpha}) + \tan^{-1}(\sqrt{\sin \alpha}) = u$, then $\cos 2u$ is equal to

(a) $\tan^2 \alpha$

(b) 0

(c)-1

(d) $\tan 2\alpha$

81				
7. The locus of a po	oint whose distance from	$(-2,0)$ is $\frac{2}{3}$ times it	s distance from the line	
$x = -\frac{9}{2}$ is				
(a) a parabola	(b) a hyperbola		(d) a circle	
· · · · · · · · · · · · · · · · · · ·		36, then the sum of th	e distances of P from the points	
$(\sqrt{5},0)$ and $(-\sqrt{5},0)$	(5,0) is			
(a) 4	(b) 8	(c) 6	(d) 18	
9. If the plane $x + a$	xy + z - 8 = 0 has equal	intercepts on the coor	dinate axes, the value of α is	
(a) 1	(b) 2	(c) 8	(d) $\frac{1}{8}$	
10. If the planes $\vec{r} \cdot ($	$(2\hat{i} - \lambda\hat{j} + \hat{k}) = 3$ and $\vec{r} \cdot ($	$(4\hat{i}+\hat{j}-\mu\hat{k})=5$ are p	parallel, then the value of λ and	ĺ
μ are			t give at the substitute of taken	
(a) $\frac{1}{2}$, -2	(b) $-\frac{1}{2}$,2	(c) $-\frac{1}{2}$, -2	(d) $\frac{1}{2}$,2	
	a particle moving alo . For what values of t t		e of any time t is given by ring?	7
(a) 0	(b) $\frac{1}{3}$	(c) 1	(d) 3	
12. The minimum val	ue of the function $ 3-x $	+9 is		
(a) 0	(b) 3	(c) 6	(d) 9	
13. The abscissa of the	he point on the curve	$f(x) = \sqrt{8 - 2x} \text{at w}$	hich the slope of the tangent i	S
-0.25 ?	the second section of the second			
(a) -8	(b) -4	(c) -2	(d) 0	
14. If $f(x) = \frac{x}{x+1}$, th	en its differential is give	n by		
(a) $\frac{-1}{(x+1)^2} dx$	(b) $\frac{1}{(x+1)^2} dx$	(c) $\frac{1}{x+1} dx$	$(d) \frac{-1}{x+1} dx$	
15. The solution of th	e differential equation	$\frac{dy}{dx} + \frac{1}{\sqrt{1-x^2}} = 0 \text{ is}$		
(a) $y + \sin^{-1} x = c$	(b) $x + \sin^{-1} y = 0$	(c) $y^2 + 2\sin^{-1} x$	$=c$ (d) $x^2 + 2\sin^{-1} y = 0$	
			e ^{-x} , where A and B are arbitra	r
constants is		Service Commission of the service of		•
(a) $\frac{d^2y}{d^2} + y = 0$	(b) $\frac{d^2y}{d^2y} - y = 0$	(c) $\frac{dy}{dx} + y = 0$	(d) $\frac{dy}{dy} - y = 0$	

17. The solution of the differential equation $\frac{dy}{dx} = e^x + 2$ is

15.

16.

(b) $y = 2x + e^x + C$ (c) $y = 2xe^x + C$

18. The random variable X has the probability density function

$$f(x) = \begin{cases} ax + b & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$
 and $E(X) = \frac{7}{12}$, then a and b are respectively

- (a) 1 and $\frac{1}{2}$
- (b) $\frac{1}{2}$ and 1
- (c) 2 and 1
- (d) 1 and 2

19. In the set \mathbb{R} of real numbers '*' is defined as follows. Which one of the following is not a binary operation on \mathbb{R} ?

(a) $a*b = \min(a,b)$

(b) $a*b = \max(a,b)$

(c) a*b=a

(d) $a*b=a^b$

20. If $a*b = \sqrt{a^2 + b^2}$ on the real numbers then * is

- (a) commutative but not associative
- (b) associative but not commutative
- (c) both commutative and associative
- (d) neither commutative nor associative

PART - II

Note: (i) Answer any SEVEN questions.

 $7\times2=14$

- (ii) Question number 30 is compulsory.
- 21. If A is a non-singular matrix of odd order, prove that |adj(A)| is positive.
- 22. Write the principal value of $tan^{-1} \left[sin \left(-\frac{\pi}{2} \right) \right]$
- 23. Identify the type of the conic $y^2 + 4x + 3y + 4 = 0$.
- 24. Find the foci of $9x^2 16y^2 = 144$.
- 25. Find the angle between the lines 2x = 3y = -z and 6x = -y = -4z.
- 26. Find the intervals of monotonicity for the function $f(x) = x^2 4x + 4$.
- 27. Evaluate: $\int_{0}^{1} \frac{\left(\sin^{-1} x\right)^{2}}{\sqrt{1-x^{2}}} dx$
- 28. Find the order and degree (if exists) of the differential equation $y \left(\frac{dy}{dx} \right) = \frac{x}{\left(\frac{dy}{dx} \right) + \left(\frac{dy}{dx} \right)^3}$.
- 29. If X is the random variable with distribution function F(x) given by,

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}(x^2 + x) & 0 \le x < 1 \text{ then find the probability density function } f(x) \\ 1, & x \ge 1 \end{cases}$$

30. If $\omega \neq 1$ is a cubic root of unity and $(1+\omega)^7 = A + B\omega$, then find A and B.

Note: (i) Answer any SEVEN questions.

- (ii) Question number 40 is compulsory.
- 31. Find the rank of the matrix $\begin{bmatrix} 4 & -2 & 6 & 8 \\ 1 & 1 & -3 & -1 \\ 15 & -3 & 9 & 21 \end{bmatrix}$
- 32. If α and β are the roots of the quadratic equation $2x^2 7x + 13 = 0$, construct a quadratic equation whose roots are α^2 and β^2 .
- 33. The line 3x+4y-12=0 meets the coordinate axes at A and B. Find the equation of the circle drawn on AB as diameter
- 34. Find the magnitude and direction cosines of the torque of a force represented by 3i+4j-5k about the point with position vector 2i-3j+4k acting through a point whose position vector is 4i+2j-3k.
- 35. Find the local extrema for the function $f(x) = x^2 e^{-2x}$ using second derivative test.
- 36. A circular plate expands uniformly under the influence of heat. If it's radius increases from 10.5 cm to 10.75 cm, then find an approximate change in the area and the approximate percentage change in the area.
- 37. If $u = e^{2(x-y)}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = u \log u$.
- 38. Evaluate $\int_{0}^{2\pi} x \log \left(\frac{3 + \cos x}{3 \cos x} \right) dx$ using properties of integration.
- 39. Show that (i) $p \lor (\neg p)$ is a tautology (ii) $p \land (\neg p)$ is a contradiction.
- 40. The population of a city grows at the rate of 5 % per year. Calculate the time taken for the population doubles. [Given $\log 2 = 0.6912$]

PART - IV

Note: Answer all the questions.

- $7\times5=35$
- 41. (a) Determine the values of λ for which the following system of equations $x+y+3z=0; 4x+3y+\lambda z=0; 2x+y+2z=0$ has
 - (i) a unique solution (ii) a non-trivial solution.

(OR)

- (b) If $\cos\alpha + \cos\beta + \cos\gamma = \sin\alpha + \sin\beta + \sin\gamma = 0$ then show that
 - (i) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$ and
 - (ii) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$
- 42. (a) Solve the equation $z^3 + 8i = 0$, where $z \in \mathbb{C}$. (OR)
- (b) Draw the curve $\sin x$ in the domain $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\sin^{-1} x$ in [-1,1].

43. (a) The eccentricity of an ellipse with its centre at the origin is $\frac{1}{2}$. If one of the directrix is x = 4, then find the equation of the ellipse.

- (b) If the straight lines $\frac{x-1}{2} = \frac{y+1}{\lambda} = \frac{z}{2}$ and $\frac{x+1}{5} = \frac{y+1}{2} = \frac{z}{\lambda}$ are coplanar, find λ and cartesian equations of the planes containing these two lines.
- 44. (a) Find the angle between $y = x^2$ and $y = (x-3)^2$.

- (b) Let $w(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$, $(x, y, z) \neq (0, 0, 0)$. Show that $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} = 0$.
- 45. (a) Using integration, find the area of the region bounded by the triangle whose vertices are (-1,2),(1,5) and (3,4).

- (b) Solve: $(1+2e^{x/y})dx + 2e^{x/y}\left(1-\frac{x}{y}\right)dy = 0$.
- 46. (a) The probability density function of X is given by $f(x) = \begin{cases} 16xe^{-4x} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$ mean and variance of X.

- (b) Verify (i) closure property (ii) associative property (iii) existence of identity (iv) existence of inverse and (v) commutative property for the operation $+_5$ on \mathbb{Z}_5 using table corresponding to addition modulo 5.
- 47. (a) If $\vec{a} = \hat{i} + \hat{j} \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j}$ and $\vec{c} = \hat{j} \hat{k}$, verify that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} (\vec{a} \cdot \vec{b})\vec{c}$

(OR)

(b) Evaluate:
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{4\sin^2 x + 5\cos^2 x}.$$

HIGHER SECONDARY SECOND YEAR

MATHEMATICS

MODEL QUESTION PAPER - 5

Time Allowed:	15 Min	+ 3.00	Hours	
---------------	--------	--------	-------	--

[Maximum Marks:90

Instructions:

- Check the question paper for fairness of printing. If there is any (a) lack of fairness, inform the Hall Supervisor immediately.
- Use Blue or Black ink to write and underline and pencil to draw (b) diagrams.

Note:

(i) All questions are compulsory.

 $20 \times 1 = 20$

(ii) Choose the correct or most suitable answer from the given four alternatives. Write the option code and the corresponding answer.

PART - I

1. If A is a 3×3 matrix such that |3adjA|=3 then |A| is equal to

(a)
$$\frac{1}{3}$$

(b) $-\frac{1}{3}$

 $(d) \pm 3$

2. If $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then the value of a_{23} is

(a) 0

(b) = 2

3. z_1, z_2 and z_3 be complex numbers such that $z_1 + z_2 + z_3 = 0$ and $|z_1| = |z_2| = |z_3| = 1$ then $z_1^2 + z_2^2 + z_3^2$ is

(b) 2

(c) 1 (d) 0

4. The value of $i^{201} + i^{202} + i^{203}$ is

(a) 1

5. If $\frac{z-1}{z+1}$ is purely imaginary, then |z| is

(c) 2

(d) 3

6. If f and g are polynomials of degrees m and n respectively, and if $h(x) = (f \circ g)(x)$, then the degree of h is

(a) mn (b) m+n (c) m^n

7. If $\sin \frac{1}{2} + \cos \frac{1}{2}$	ec $\frac{-}{4} = \frac{-}{2}$, then the val	lue of x is	
(a) 4	(b) 5	(c) 2	(d) 3
8. The axis of the	parabola $y^2 - 2y + 8x$	-23 = 0 is	* 2
(a) $y = -1$	(b) $x = -3$	(c) $x = 3$	(d) $y = 1$
	y of the hyperbola who tween the foci is	se latus rectum is 8 and c	conjugate axis is equal to half
(a) $\frac{4}{3}$	(b) $\frac{4}{\sqrt{3}}$	(c) $\frac{2}{\sqrt{3}}$	(d) $\frac{3}{2}$
10. If the volume of	of the parallelepiped w	with $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ as	s coterminous edges is 8 cubic
		, 14x. • 10j. •	$\times (\vec{b} \times \vec{c}), (\vec{b} \times \vec{c}) \times (\vec{c} \times \vec{a})$ and
$(\vec{c}\! imes\!\vec{a})\! imes\!\left(\!ec{a}\! imes\!ec{b} ight)$	as coterminous edges	is,	The state of the s
(a) 8 cubic unit	s (b) 512 cubic units	(c) 64 cubic units	(d) 24 cubic units
11. The angle between	een the lines $\frac{x-2}{3} = \frac{y}{3}$	$\frac{x+1}{-2}, z=2 \text{ and } \frac{x-1}{1}=$	$\frac{2y+3}{3} = \frac{z+5}{2}$ is
(a) $\frac{\pi}{6}$	(b) $\frac{\pi}{4}$	(c) $\frac{\pi}{3}$	(d) $\frac{\pi}{2}$
12. The slope of the	curve $y^3 - xy^2 = 4$ a	t the point where $y=2$	is
(a) -2	(b) $-\frac{1}{2}$	(c) $\frac{1}{4}$	(d) $\frac{1}{2}$
13. The point of infl	ection of the curve y	$=(x-1)^3$ is	
(a) $(0,0)$	(b) (0,1)	(c) (1,0)	(d) (1,1)
14. If $f(x,y) = e^{xy}$,	then $\frac{\partial^2 f}{\partial x \partial y}$ is equal to	ide stop mytrag och	
(a) xye^{xy}	(b) $(1+xy)e^{xy}$	(c) $(1+y)e^{xy}$	(d) $(1+x)e^{xy}$
15. If $u(x,y) = e^{x^2 + y}$	$\frac{\partial u}{\partial x}$ is equal ((c) $(1+y)e^{xy}$ to (c) x^2u equation $\log\left(\frac{dy}{dx}\right) = x + \frac{1}{2}$	
(a) $e^{x^2+y^2}$	(b) 2 <i>xu</i>	(c) x^2u	(d) y^2u
16. The general solut	tion of the differential	equation $\log \left(\frac{dy}{dx} \right) = x + 1$	-y is
$(a) e^x + e^y = c$	(b) $e^x + e^{-y} = c$	(c) $e^{-x} + e^y = c$ ne general solutions of o	(d) $e^{-x} + e^{-y} = c$
(a) $n-1$, n	(b) $n, n+1$	(c) $n+1, n+2$	(d) $n+1, n$
18. If the function	$f(x) = \frac{1}{12} \text{for } a < x$	< b, represents a prob	(d) $n+1$, n cability density function of
continuous rando	m variable X, then wh	ich of the following car	annot be the value of a and b
Model Question Papers		330	
GRE	EN GARDEN MATR Perundur PH: 9486379461,		

1	On a multiple-c	choice exam with 3	(c) 7 and 19 possible destructives r more correct answers	for each of the 5 q	uestions, the
	(a) $\frac{11}{243}$	(b) $\frac{3}{8}$	(c) $\frac{1}{243}$	(d) $\frac{5}{243}$	Partie
2	O. In the last colum	nn of the truth table	for $\neg(p \lor \neg q)$ the nu	mber of final outcome	es of the truth
	value ' F ' are	(b) 2	(c)) 3	(d) 4	

PART - II

Note: (i) Answer any SEVEN questions.

(a) 1

 $7 \times 2 = 14$

(ii) Question number 30 is compulsory.

21. Find the rank of the matrix: $\begin{vmatrix} 1 & -2 & -1 & 0 \\ 3 & -6 & -3 & 1 \end{vmatrix}$

22. If $z_1 = 2 - i$ and $z_2 = -4 + 3i$, find the inverse of $\frac{z_1}{z_2}$

23. State the reason for $\cos^{-1} \left| \cos \left(-\frac{\pi}{6} \right) \right| \neq \frac{\pi}{6}$.

24. Find the length of the latus rectum of the hyperbola $16y^2 - 9x^2 = 144$

Evaluate: $\lim_{x\to 0} \left(\frac{\sin x}{r^2} \right)$.

26. Find the area of the region bounded by the line 6x+5y=30, x axis and the lines x=-1 and x=3.

27. Solve: $\frac{dy}{dx} + y = e^{-x}$

28. Find the mean and variance of X, for the probability mass functions of X given below:

 $f(x) = \begin{cases} 2(x-1) & 1 < x << 2 \\ 0 & \text{otherwise} \end{cases}$

29. Let $A = \{a + \sqrt{5}b : a, b \in \mathbb{Z}\}$. Check whether the usual multiplication is a binary operation on A.

30. Find the vector equation of the plane passing through the point (2,2,3) having 3,4,3 as direction ratios of the normal to the plane

PART-III

(i) Answer any **SEVEN** questions. Note:

 $7 \times 3 = 21$

(ii) Question number 40 is compulsory.

Solve by matrix inversion method: 5x+2y=4,7x+3y=5

Solve the equation $2x^3 + 11x^2 - 9x - 18 = 0$

- 33. The maximum and minimum distances of the Earth from the Sun respectively are $152 \times 10^6 \, km$ and $94.5 \times 10^6 \, km$. The Sun is at one focus of the elliptical orbit. Find the distance from the Sun to the other focus.
- 34. If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} \hat{j} + \hat{k}$, $\vec{c} = 3\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{a} \times (\vec{b} \times \vec{c}) = l\vec{a} + m\vec{b} + n\vec{c}$, find the values of l, m, n.
- 35. Find two positive numbers whose product is 20 and their sum is minimum.
- 36. Find the approximate value of $\sqrt[5]{31}$.
- 37. Find the area of the region bounded by 2x-y+1=0, y=-1, y=3 and y-axis.
- 38. Find the differential equation for the function $y = 2(x^2 1) + ce^{-x^2}$ where c is an arbitrary constant.
- 39. If $X \sim B(n, p)$ such that 4P(X = 4) = P(x = 2) and n = 6. Find the distribution, mean standard deviation.

40. If
$$x + iy = \sqrt{\frac{a+ib}{c+id}}$$
, prove that $x^2 + y^2 = \sqrt{\frac{a^2 + b^2}{c^2 + d^2}}$

PART - IV

Note: Answer all the questions.

 $7 \times 5 = 35$

- 41. (a) Test for consistency and if possible, solve the system of equations 2x-y+z=2, 6x-3y+3z=6, 4x-2y+2z=4. (OR)
 - (b) Find the all cube roots of $\sqrt{3} + i$
- 42. (a) Find a polynomial equation of minimum degree with rational coefficients, having $\sqrt{5} \sqrt{3}$ as a root. (OR)
 - (b) If D is the midpoint of the side BC of a triangle ABC, then show by vector method that $\left|\overrightarrow{AB}\right|^2 + \left|\overrightarrow{AC}\right|^2 = 2\left(\left|\overrightarrow{AD}\right|^2 + \left|\overrightarrow{BD}\right|^2\right)$.
- 43. (a) Show that the straight lines $\vec{r} = \left(5\hat{i} + 7\hat{j} 3\hat{k}\right) + s\left(4\hat{i} + 4\hat{j} 5\hat{k}\right)$ and $\vec{r} = \left(8\hat{i} + 4\hat{j} + 5\hat{k}\right) + t\left(7\hat{i} + \hat{j} + 3\hat{k}\right)$ are coplanar. Find the vector equation of the plane in which they lie. (OR)
 - (b) The volume of a cylinder equals V cubic cm, where V is a constant. Find the condition that minimize the total surface area of the cylinder.

GREEN GARDEN MATRIC. HR. SEC. SCHOOL
Perundurai R.S.

PH: 9486379461, 8344933377

44. (a) If the curves $ax^2 + by^2 = 1$ and $cx^2 + dy^2 = 1$ intersect each other orthogonally then, $\frac{1}{a} - \frac{1}{b} = \frac{1}{c} - \frac{1}{d}.$ (OR)

(b) Let
$$z(x, y) = xe^y + ye^{-x}, x = e^{-t}, y = st^2, s, t \in \mathbb{R}$$
. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.

- 45. (a) Prove that $\int_{0}^{\frac{\pi}{4}} \log(1 + \tan x) dx = \frac{\pi}{8} \log 2$. (OR)
 - (b) Solve: $\frac{dy}{dx} = \frac{x y + 5}{2(x y) + 7}$.
- 46. (a) The sum of mean and variance of a binomial distribution for five trails is 1.8. Find the distribution. (OR)
 - (b) Establish the equivalence property $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
- 47. (a) Solve $\cos(\tan^{-1} x) = \sin(\cot^{-1} \frac{3}{4})$
 - (b) Find the equation of the circle through the points (1,0), (-1,0), and (0,1).

(OR)

GREEN GARDEN MATRIC. HR. SEC. SCHOOL
Perundurai R.S.
PH: 9486379461, 8344933377

stitum formacities as the life of the contact of

الاسالوات

MATHEMATICS

MODEL QUESTION PAPER - 6

Time Allowed:	15	Min	+ 3.00	Hours]	
---------------	----	-----	--------	--------	--

[Maximum Marks:90

Instructions:

- Check the question paper for fairness of printing. If there is any (a) lack of fairness, inform the Hall Supervisor immediately.
- Use Blue or Black ink to write and underline and pencil to draw (b) diagrams.

PART - I

Note:

(i) All questions are compulsory.

- $20 \times 1 = 20$
- (ii) Choose the correct or most suitable answer from the given four alternatives. Write the option code and the corresponding answer.
- 1. If $\rho(A) = \rho([A|B])$, then the system of linear equations AX = B is
 - (a) consistent and has a unique solution
- (b) consistent
- (c) consistent and has infinitely many solution (d) inconsistent
- 2. Let A be a non-singular matrix then which one of the following is false

 - (a) $\left(\operatorname{adj} A\right)^{-1} = \frac{A}{|A|}$ (b) I is an orthogonal matrix

 - (c) $adj(adjA) = |A|^n A$ (d) If A is symmetric then adjA is symmetric
- 3. If $z = \frac{(\sqrt{3} + i)^3 (3i + 4)^2}{(8 + 6i)^2}$, then |z| is
 - (a) 0

(b) 1

(c)2

- (d) 3
- 4. The continued product of the four values of $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{\frac{1}{4}}$ is
 - (a) 1

(b) -1

(d) -2

- 5. The value of $\sin^{-1}(2\cos^2 x 1) + \cos^{-1}(1 2\sin^2 x)$ is
 - (a) $\frac{\pi}{2}$

(b) $\frac{\pi}{2}$

- (d) $\frac{\pi}{\epsilon}$
- 6. The area of quadrilateral formed with foci of the hyperbolas $\frac{x^2}{a^2} \frac{y^2}{h^2} = 1$ and $\frac{x^2}{a^2} \frac{y^2}{h^2} = -1$ is

				s ris or and a second s
	(a) $4(a^2+b^2)$	(b) $2(a^2+b^2)$		
7	. An ellipse has <i>OB</i> as ser Then the eccentricity of			gle FBF' is a right angle.
	(a) $\frac{1}{\sqrt{2}}$	(b) $\frac{1}{2}$	•	(d) $\frac{1}{\sqrt{3}}$
8	. If $\vec{a}, \vec{b}, \vec{c}$ are three non-c	oplanar unit vectors su	ch that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}$	$\frac{\vec{b} + \vec{c}}{\sqrt{2}}$, then the angle
	between \vec{a} and \vec{b} is		•	
	(a) $\frac{\pi}{2}$	(b) $\frac{3\pi}{4}$	$(c)\frac{\pi}{4}$	(d) π
9.	The equation of the plan $x+2y-2z-9=0$ is	ne passing through (3,4	4,5) and parallel to the	e plane
	(a) $x + 2y - 2z = 4$		7 47	
10.	If $\left[\vec{a}, \vec{b}, \vec{c}\right] = 1$, then the	value of $\frac{a \cdot (b \times c)}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{b}{(c \times \vec{a}) \cdot \vec{b}}$	$\frac{(c \times a)}{\vec{a} \times \vec{b}) \cdot \vec{c}} + \frac{c \cdot (a \times b)}{(\vec{c} \times \vec{b}) \cdot \vec{a}} \text{ is}$	s Likk ja lämaali en al-
	(a) 1	(b) -1	(c) 2	(d) 3
11.	The slope of the line no	rmal to the curve $f(x)$	$(x) = 2\cos 4x$ at $x = \frac{\pi}{12}$	is
	(i) $-4\sqrt{3}$	(ii) -4	(iii) $\frac{\sqrt{3}}{12}$	(iv) $4\sqrt{3}$
12.	The number given by th	e Rolle's theorem for	the function $x^3 - 3x^2$	$,x \in [0,3]$ is
	(a) 1	(b) $\sqrt{2}$	(c) $\frac{3}{2}$	(d) 2
13.	If $f(x, y, z) = xy + yz +$	zx , then $f_x - f_z$ is eq	ual to '	5
	•	<i>A</i> \	(4)	(d) $y-x$
14.	(a) $z-x$ If $f(x) = \int_0^x t \cos t dt$, the	$\frac{df}{dx} =$	roam ansa tama ay	
	(a) $\cos x - x \sin x$	(b) $\sin x + x \cos x$	(c) $x \cos x$	(d) $x \sin x$

15. The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{2 + \cos x} dx$ is

(a) 0

(b) 2

(c) log 2

(d) log 4

	*							
1.0	The order and de (a) 2, 3	of th	e differential	equation	$\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/3}$	$+x^{1/4}=0$ are re	espectively	
16.	The order and de	gree or u	le differential	ing a second	$dx^2 (dx)$	(4) 2		
	(a) 2, 3	(1	b) 3, 3		(c), 2, 6	(u) 2,		
17.	The solution of the	ne differe	ntial equation	$2x\frac{dy}{dx}$	y = 3 represent	ts	n, M	
	(a) atmaight lines	a	b) circles		(c) parabola	(d) ell	pse	· ·
18.	A random variable X has binomial distribution with $n = 25$ and $p = 0.8$ then standard deviation							tion
	of X is					(d) 2	· .	
	(a) 6	•	b) 4		(c) 3			
19.	$\text{If } f(x) = \begin{cases} 2x & 0 \\ 0 & 0 \end{cases}$	$0 \le x \le a$ otherwise	is a probab	oility dens	sity function of	a random vari	able, the va	alue
	then of a is	.y ./			(c) 3	(d) 4	erty to the second	4
	(a) 1	,	b) 2		(c) 3	(u) =		
20.	Subtraction is not			L 4. 2	(c) N	(d) Q		.4
	(a) R	* . :	b) Z		(Septilis 1995) Lauren er gebüset (1	ن کرد مهر د ۱ گرمیرز کرد		1
	GT.	**************************************		AK1 – 11	Lennae in Alienae Na		7×2	=1
	i) Answer any SE		V2		y		A Coppe	
(i	i) Question numb	er 30 is c	compulsory.	,		. **		
21.	If $adj(A) = \begin{bmatrix} 0 \\ 6 \\ -3 \end{bmatrix}$	-2 0	$\begin{bmatrix} 1 \\ 6 \end{bmatrix}$, find A^{-1}	•		n giis sa na ng pada	Agreement of	4
			• * * * * * * * * * * * * * * * * * * *					
	Express $-1+i\sqrt{3}$	4 297.0	그는 그 사람들이 없어요? 그 나를	2 . 2 ²		က ျွတ်သေးကသည်။ လျှ - O	ina etii	
	Find centre and ra		* ,		P 1		, ()	
24.	Find the angle be	tween the	e straight line	$\vec{r} = (2\hat{i})$	$+3\hat{j}+\hat{k}+t(i)$	(j+k) and t	he plane	
	2x-y+z=5.			official and				î
~ -		,	:		at annliaghla t	a the function	e de	
25.	Explain why Lag	range me	ean value the	orein is n	ot applicable t			
	$f(x) = \left \frac{1}{x} \right , \ x \in [-$	-1,1].	, *** · · · · · · · · · · · · · · · · ·	*	en e	e s d	5.4	
26.	Evaluate: $\int_{0}^{1} \frac{ x }{x} dx$	<i>l</i> x			en e		ration and the	
27.	Form the differen	ntial equ	ation of the	family o	of parabolas	$y^2 = 4ax$, whe	re a is an a	ırbit

Model Question Papers

constant.

28. Compute
$$P(X=k)$$
 for the binomial distribution, $B(n,p)$ where $n=10$, $p=\frac{1}{5}$, $k=4$

29. Write the statements in words corresponding to $\neg p$, $q \lor \neg p$, where p is 'It is 'It is raining.'.

30. Find the value of
$$\cos^{-1}\left(\frac{1}{2}\right) - 2\sin^{-1}\left(-\frac{1}{2}\right)$$

PART-III

Note:

(i) Answer any SEVEN questions.

 $7 \times 3 = 21$

(ii) Question number 40 is compulsory.

31. Find the adjoint of the matrix
$$A = \begin{bmatrix} 1 & 3 \\ 2 & -5 \end{bmatrix}$$
 and verify that $A(adjA) = (adjA)A = |A|I$.

- 32. Show that the points 1, $-\frac{1}{2} + \frac{i\sqrt{3}}{2}$ and $-\frac{1}{2} \frac{i\sqrt{3}}{2}$ are the vertices of the equilateral triangle.
- 33. Find the equation of the hyperbola with vertices $(0,\pm 4)$ and foci $(0,\pm 6)$.

34. If the two lines
$$\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$$
 and $\frac{x-3}{1} = \frac{y-m}{2} = z$ intersect at a point, find the value of m .

35. If
$$w(x, y) = xy + \sin(xy)$$
, then prove that $\frac{\partial^2 w}{\partial y \partial x} = \frac{\partial^2 w}{\partial x \partial y}$

36. Evaluate :
$$\int_{0}^{\frac{\pi}{3}} \frac{\sec x \tan x}{1 + \sec^{2} x} dx$$
.

37. Solve:
$$\frac{dy}{dx} = \sqrt{\frac{1-y^2}{1-x^2}}$$
.

38. Form the differential equation of $y = e^{3x} (C\cos 2x + D\sin 2x)$, where C and D are arbitrary constants.

39. Solve:
$$y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$$

40. Find the equation of the tangent to the curve $x^2y - x = y^3 - 8$ at x = 0

PART - IV

Note: Answer all the questions.

 $7 \times 5 = 35$

41. (a) Find the inverse of the non-singular matrix
$$A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$
, by elimentary transformations. (OR)

transformations.

(OR)

337

(b) If
$$z = x + iy$$
 and $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$, then show that $x^2 + y^2 = 1$

- 42. (a) Solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution.(OR)
 - (b) Solve $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$, if $6x^2 < 1$.
- 43. (a) An elliptical whispering room has height 5m and width 26m. Where should two persons stand if they would like to whisper back and forth and be heard. (OR)
 - (b) Show that the four points (6,-7,0), (16,-19,-4), (0,3,-6), (2,-5,10) lie on a same plane.
- 44. (a) Show that the straight lines x+1=2y=-12z and x=y+2=6z-6 are skew and hence find the shortest distance between them. (OR)
 - (b) If we blow air into a balloon of spherical shape at a rate of 1000cm³ per second. At what rate the radius of the baloon changes when the radius is 7cm? Also compute the rate at which the surface area changes.
- 45. (a) If an initial amount A_0 of money is invested at an interest rate r compounded n times a year, the value of the investment after t years is $A = A_0 \left(1 + \frac{r}{n}\right)^{n}$. If the interest is compounded continuously, (that is $n \to \infty$) show that the amount after t years is $A = A_0 e^{rt}$. (OR)
 - (b) If $u = \sec^{-1}\left(\frac{x^3 y^3}{x + y}\right)$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \cot u$
- 46. (a) The curve $y = (x-2)^2 + 1$ has a minimum point at P. A point Q on the curve is such that the slope of PQ is 2. Find the area bounded by the curve and the chord PQ. (OR)
 - (b) Prove that $p \to (\neg q \lor r) \equiv \neg p \lor (\neg q \lor r)$ using truth table.
- 47. (a) An equation relating to the stability of an aircraft is given by $\frac{dv}{dt} = g \cos \alpha kv$, where g, α , k are constants and v is the velocity. Obtain an expression in terms of v if v = 0 when t = 0. (OR)
 - (b) Four fair coins are tossed once. Find the probability mass function, mean and variance for number of heads occurred.

GREEN GARDEN MATRIC. HR. SEC. SCHOOL
Perundurai R.S.

PH: 9486379461, 8344933377